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Parallel Computation of Forward Radiated Noise
of Ducted Fans with Acoustic Treatment

Yusuf Ozyorik*
Middle East Technical University, 06531 Ankara, Turkey

Forward radiated noise of ducted fans is computed numerically on parallel processors solving the three-
dimensional, time-dependent Euler equations in body-conformed coordinates with a fourth-order-accurate, finite-
difference, Runge-Kutta time-integration scheme. Sound attenuation effects of inlet wall acoustic treatment are
included in computations employing a time-discrete form of the standard impedance condition. A distributed
computing approach with domain decomposition is used for integrating the equations in parallel using the mes-
sage passing interface library routines. The abilities of the method are demonstrated with hard- and soft-wall

simulations of the JT15D inlet, including flow effects.

I. Introduction

NCREASED sizes of turbofanengines have placed more empha-

sis on fan noise. Reducing this noise relies heavily on acoustic
treatment (liners) of the ducting system of the engine. Careful se-
lection of the lining material and its installation require detailed
analysis of the sound fields of the engine inlet and exhaust ducts.
To date such analysis with liners has been done successfully only in
the frequency domain,' whereas time-domain studies treated only
hard-walled ducts.>~* This is because the behavior of lining materi-
als is frequency dependent, and an appropriate boundary condition
was not given in the time domain.

A numerical procedure for the application of the classical
frequency-dependert impedancecondition’ in the time domain was,
however, devised by Ozyoriik and Long® using the z transform, es-
tablishing a connection between the frequency and time domains.
This technique was utilized for numerical simulations of a flow-
impedance tube and was validated by these authors by comparing
results with experiment.”-® This method is extended in the present
paper to curved walls for numerical predictions of noise radia-
tion from lined ducted fans. Solutions are obtained using the full,
three-dimensional, time-dependent Euler equations as the govern-
ing equations. Nonreflecting conditions are imposed at the far-field
boundariesof the finite computationaldomain. Eigensolutionsto the
standard cylindrical duct problem are used as an acoustic source at
the interface between the fan and inlet region. Acoustic information
isextractedby subtractingthe mean flowfield from the instantaneous
one. These are described in the next section. Then, applications of
the method to the JT15D turbofaninlet are demonstratedusing plane
wave and spinning modes. Results are compared with experiment
for the spinning (13, 0) mode.

II. Mathematical Model

A. Governing Equations

The three-dimensional,time-dependent Euler equationsin cylin-
drical coordinates are used as the governing equations. These
equations are transformed into a body-fitted curvilinear coordi-
nate systemthroughthe mappingsx =x (&, n, ¢),r =r(, n, {),and
0 =0(&,n,¢), where x, r, and 0 are the cylindrical coordinate di-
rections and &, n, and ¢ are the curvilinear coordinate directions.
Thus, the transformed equations can be written in the form
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where 0=J"'Q, E=J ' (§,E+§F+r"'5G), F=J"'(n.E+
nF+r'9G),G=J"(¢E+¢F+r'G), and S=J"'r"'8S,
in which J is the Jacobian of the coordinate transformation. Q is
the conservative solution vector in cylindrical coordinates, that is,
0=Ip, pu, pv, pw, pel”, where p is the density; u, v, and w are
the velocity components in the x, r, and 6 directions, respectively;
and e is the total energy per unit volume. E, F, and G are the vector
components of the flux tensor, and S is the source vector that arises
in cylindrical coordinates. The terms E, F, G, and S may be found
in standard textbooks and are not repeated here.

B. Boundary Conditions
1. Far-Field Conditions

Calculationsare carried out on a finite computationaldomain em-
ploying nonreflecting boundary conditions on the far-field bound-
ary. The conditions proposed by Tam and Webb’ and Bayliss and
Turkel'® are used as the nonreflecting conditions. These boundary
conditions are put in cylindrical coordinates so that the same map-
ping transformations as in the interior apply to them.

2. Fan-Face Conditions

The steady part of the solution (mean flow) is obtained using
one-dimensional characteristics-based boundary conditions at the
fan face. These conditions drive the local variables to some mean
values at the fan stage, which are determined a priori based on
one-dimensional gasdynamics relations using the mass flow rate
(MFR) and freestream Mach number information as the operating
conditions.

Exact cylindrical duct eigensolutions are used at the fan face to
excite the acousticfield, which is assumed to be a deviationfrom the
mean field. For the cases of no mass flow through the duct, velocity
perturbations are specified at the fan face. These perturbations are
obtained substituting the exact acoustic pressure expressioninto the
momentum equations. The other dependent variables are obtained
from the Euler equations as the interior domain. However, when
there is flow through the duct, the acoustic pressure at the fan face is
specified, and the Euler equations are solved for the other variables.
Although specification of pressure at the fan face is overrestric-
tive for downstream propagating waves, which may be created by
a liner and/or impedance mismatches due to nonuniform duct cross
sections, this approach worked sufficiently well for most of the
cases discussed in this paper. It was determined that, when the liner
induced modes are strong, reflections from the fan-face boundary
may occur and in turn contaminate far-field sound, which indicates
that the present fan-face conditions must be improved. Implement-
ing more robust, characteristics-basad conditions is the subject of
current research. The rotor-stator interaction theory of Tyler and
Sofrin!! is employed to determine which modes are created with
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the local mean-flow conditions. Multiple modes and multiple har-
monics of the blade passing frequency (BPF) can be superimposed
to form the source.

3. Hard-Wall Conditions

A proper conditionfor Euler calculationson a hard wall is that the
normal velocity vanish. In other words, fluid particles are allowed
to slip at a hard wall. Numerically, the normal component of the
contravariantvelocity,whichis givenby Ve = n.u +n,v + (ns /r)w
in this paper with an orthogonalmesh, is set to zero, but the values of
the tangential contravariant velocity components, which are given
by Uc=&u+&v+ (& /r)wand We = u+ v+ (g /r)w, are
extrapolated from the interior solution. Density is also extrapolated
from the interior. Then, when it is assumed that the grid lines are
orthogonalat the wall, pressureis found from the normal momentum
equation

o _ pV?
= T
M I+ (/] R

where V, is the tangential velocity and R is the radius of wall cur-
vature, which may be found using the metrics.

2

4. Time-Discrete Impedance Condition

An acoustic impedance condition is applied on acoustically
treated surfaces (liner). Because of the slip condition at the wall
and because there is in general fluid penetration into an acous-
tic treatment element, that is, nonzero normal velocity exists, the
same equations as in the interior are solved for the velocity com-
ponents, but the energy equation is replaced with the impedance
condition equation. The time-discrete form of the impedance con-
dition is given as’

(Pt = pi)/dt+ Lopit =—ag (Vi1 —vl,) /At =Rl (3)

where p, is the pressure perturbation, superscriptn is the time step,
At is the time increment from one step to the next, v, , is the normal
component of the velocity perturbation, and £, is the spatial opera-
tor,Lo =V, -V —n-(n-VV,), with V, the mean velocityand n the
surface normal. When there is transformation from the frequency
domain to the time domain, the effects of the past acoustic field on
the current solution are contained in the R term given by
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where the constant parameters ao ;.. v, and by y, are related to
the z transform of the functional form of the frequency-dependent
impedance data.’

Implementation of the impedance condition was described pre-
viously for two-dimensional problems with flat walls. However, the
inlet wall of a turbofanis notflat, and the wall curvature effects must
be taken into account properly. This is done in this paper by writing
the spatial operator L in the form £, = Uy ¢ 3/0& + Wy ¢ 8/9¢ +
Vn -V, /dn, where Uy c and Wy ¢ are the mean tangential con-
travariant velocity components, respectively. Note that the mean
flow satisfies the flow tangency, and hence, the normal contravari-
ant velocity Vj ¢ is zero. The impedance condition and the momen-
tum equations are coupled on curved walls as described in the next
section.

C. Numerical Implementation

A four-stage Runge-Kutta time-integration scheme is employed
to advance the solution in time. Spatial derivatives are evaluated
using fourth-order accurate finite differencing. Because central
schemes lack dissipation mechanisms, artificial dissipation is used
to suppress the development of spurious waves. The amount of dis-
sipation added is based on the local flow gradients. The stages of
the Runge-Kutta (R-K) scheme are given by

0" =0,

Qn+l :Q(4)7

where R(Q) and D(Q) indicate the residual of the governing equa-
tions [sum of the spatial derivatives and the source term in Eq. (1)]
and dissipation, respectively.

The interior solution scheme and the time-discrete impedance
condition are coupled through the linearized normal momentum
equation written at the wall, with V =V, + V,, being velocity de-
composition, as
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where vg, is the normal component of the mean velocity, £ =
Uyc /98 + Vo cd/on+ Wy ¢ d/3¢, L, is the perturbed equivalent
of L, py is the mean density, and p, is the density perturbation. In
curvilinear coordinates, it can be shown that Eq. (6) transforms to
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where V, ¢ is the normal component of the contravariant velocity
perturbation; ug ¢ and wg, are the mean tangential velocity com-
ponents in the & and ¢ directions, respectively; Rs and R, are the
radii of wall curvature in the £ and ¢ directions, respectively; and
IVnl=[n?+n? + (1 /r)*1"/>. For most cases the mean flow is ax-
isymmetric; thus, both W, ¢ and wy ¢ are zero in Eq. (7). When it
is assumed that this is the case, the time discretization of the lin-
earized normal momentum equationis given on the impedance wall
as follows:
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We evaluate some of the terms at the R-K stage s for enhancing
stability.” The tangential velocity perturbation u, ¢ and the density
perturbation p, are extrapolated from the interior solution once they
are available from integration of the interior equations. Then this
equation is substituted for the time derivative of the normal veloc-
ity perturbationinto the impedance condition rewritten for an R-K

stage s in the form
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Afterrearrangementand discretizationof the resultingequation, the
following form of linear system of equationscan be obtained for the
pressure perturbationsat wall mesh points indexed by subscriptpair
i,k:

(s)

() (s) (s)
gi.kpi —2.k + hi.kpi, 1k + di.kpi_k + ei.kplur 1,k

+ fixp" 5 =RHSi« (10)

where the right-hand side is RHS and the acoustic pressure is given
by p to avoid a crowd of subscripts. This system of equations is
solved after the interior solution is obtained. The normal velocity
perturbationis then found by substituting the acoustic pressure so-
lution into the impedance condition Eq. (9).

In the present work, the solutionis stored at the cell centers, rather
than the nodal points on the mesh. This approach overcomes the
singularity problem that exists along the centerline in the current
formulation. As a result of this, the wall conditions are applied
between a ghost pointinside the wall and the first interior grid point
off the wall. Thisin turnrequiresinterpolationof the data on the wall
points. Third-orderinterpolationis used to this effect. Extrapolations
of tangential contravariant velocities and density are also done to
third-orderaccuracy.
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III. Grid System and Parallelization

Conformal mapping is used to generate the meshes used. Such
a mesh is shown in Fig. 1 with its domains for the parallel com-
puting approach of the present method. Each domain is assigned
to a different processor that is on a network for distributed com-
puting. Boundary data are exchanged across the interface between
two neighboring subdomains, that is, communication among the
processors, and message passing interface protocol is used for par-
allelization. In general, a three-dimensionaldomain decomposition
is used such that the ratio of the surface work to the volume work
is minimum.

IV. Discussion of Simulations

Axisymmetric and three-dimensionalcomputations pertaining to
the JT15D inlet geometry are presented. Particularly, forward radi-
ation of the (0, 0) + (0, 1), and spinning (6, 0) and (13, 0) modes is
considered at different operating conditions. Axisymmetric com-
putations are carried out for the (0, 0) + (0, 1) modes, whereas
full three-dimensional computations are performed for the spin-
ning modes. A single spinning mode represents periodic waves in
the azimuthal direction. Therefore, for such cases it is sufficient to
consider only one pressure lobe with periodic boundary conditions
to reduce the computation time. The inlet centerbody is omitted in
computations of the (0, 0) + (0, 1) and (6, 0) modes but retained in
computation of the (13, 0) mode.

Calculations employ only fourth-order artificial dissipation to
provide the necessary background dissipation with minimal effects
on the physical waves. Local time stepping is used for steady-state
solutions (mean flow), but for acoustic calculations, the time-step
size At is determined based on the BPF such that At is within the
stability bounds of the scheme. Far-field soundis determined using a
moving surface Kirchhoff’s formula (see Ref. 12). The details of the

Inter-processo
boundary

Kirchhoff surface

Fig.1 Computationalmesh and its decomposition for distributed par-
allel computing (every other grid line shown).

p’ (N/m’)
60
48

36

No liner

a)

Kirchhoff algorithm are given by Ozyoriik and Long.2 The acoustic
treatment panel used in computations of the plane wave modes and
the spinning (6, 0) mode is that in Ref. 7. The impedance values of
this liner and that used for the spinning (13, 0) mode are given in
Table 1 for the frequencies considered in the paper.

A. Radiation of (0, 0) + (0, 1) Modes Without Mass Flow

The first case involves tonal radiation of the plane wave modes
(0,0) and (0, 1) combined up to the fourth harmonic of the BPF
forming a multifrequency source. A 180-deg phase difference is
introduced between the (0, 0) and (0, 1) modes of each harmonic,
and the total acoustic pressure amplitude for each pair is selected to
carry a sound pressure level of 120 dB at the rotor blade tips. The
BPF is chosen as 0.5 kHz so that the highest harmonic (for which
the frequency is 2 kHz) does not exceed the resolution requirement
of the mesh. At these conditions, only the (0, 1) mode at the BPF is
naturally cut off. The grid has 192 x 48 points along the inlet surface
and in the normal direction to it, respectively. Figure 1 shows the
mesh with every other grid line deleted for clarity. The grid is divided
into four subdomains for parallel processing. The Kirchhoff surface
location is also illustrated in Fig. 1. In the important region, from
the fan face to the Kirchhoff surface, the number of grid points
per wavelength does not fall below 16 for the 4 BPF waves. This
grid resolution is sufficient for propagating the waves numerically
without significant numerical error buildup? The time-step size is
taken as 1/1024 BPF. Three different liner locations are chosen for
comparison purposes, with a constant material length of 0.21 m.

The liner locations are shown in Figs. 2a and 2b along with the
computed acoustic pressure contours from excitation at the fan face
using these modes. No mass flow exists. The effect of the acoustic
treatment is clear from Figs. 2a and 2b. It is evident that there is
strong focusing of the waves toward the centerline. When compared
with the hard-wall case, the generation of some additional modes
over the liner is observed, especially for liner position 1. These
modes propagate both in upstream and downstream directions. The
fan-face conditions yielded only minor reflections, which did not
extend back out to the Kirchhoff surface location shown in Fig. 1.
This was observed for each liner location considered, when the
acousticpressurecontoursat differentwave periods were compared.

Table1 Liner impedance

Frequency,

kHz Z/poco
0.5 0.406 — 1.587i
1.0 0.476+0.113i
1.5 1.078 + 1.638i
2.0 5.009 —0.276i
2.1 4.008 — 1.601i
3.15 0.638 +0.500i
3.15 1.136+ 0.500i

Fig.2 Alteration of acoustic field by liner: a) upper half without liner and lower half with liner at position 1 and b) upper and lower halves with liner

at positions 2 and 3, respectively.
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Fig.3 Effect ofliner placement on far-field sound levels and directivity;
source (0, 0) and (0, 1) modes with 180-deg phase difference combined
at 1 BPF (0.5 kHz), 2 BPF, 3 BPF, and 4 BPF without mass flow.

The Kirchhoff surface integration results for the far-field sound
are given in Fig. 3 for each harmonic of the fundamental frequency,
which were separated by a fast Fourier transform. Kirchhoffintegra-
tions were performed at every fourth time step of the R-K integration
for a 50-m radius arc from the inlet mouth. Because the (0, 1) mode
is cut off at 1 BPF, sound pressure level (SPL) curves do not exhibit
any wave reinforcements or cancellations at far-field points at this
low frequency. It is evident from Fig. 3 that liner position 3 is the
bestlocation for absorbingnoise at this particularfrequency, though
the total attenuationis not significant compared to that for the 2 BPF
components. Although all liner locations yielded some reductionin
SPL in aregion up to 40 deg from the inlet axis, there is an increase
in SPL between40and 150 degat 2 BPF. As the frequencyincreases,
more lobes appear. Liner position 2 yielded significant attenuation
for the 3 BPF components between 60 and 150 deg, although the
other locations did not. Liner position 1 appears to be the best in
overall attenuation pattern at 3 BPF. The 4 BPF components are also
absorbed significantly with this position of the liner.

B. Radiation of (0, 0) + (0, 1) Modes with Flow

In this section, the ability of the code is demonstrated with mass
flow. Again the (0, 0) and (0, 1) modes are selected for excitation,
but at a BPF of 2.0 kHz. Introducing additional frequencies caused
stability problems due to the sudden jump in the impedance at the
junctions of the liner and hard walls, similar to those discussed in
detail in Refs. 7 and 8. It was shown in Ref. 8 that this type of
instability could be removed using a sheared background flow. The
freestream Mach number and the MFR are arbitrarily taken to be
0.204 and 15 kg/s, respectively. A mean-flow calculationis carried
out first, until the residual is driven about 12 orders of magnitude

down. Then acoustic computationsare started from the steady-state
solution, with At = 1/512 BPF. At BPF =2.0kHz, the cutoffratios
for the (0, 0) and (0, 1) modes are 0o and 2.6, respectively. The total
amplitude of these modes is set to a fluctuation level of 110 dB at
the rotor tip. The same mesh as the preceding case is used, and the
liner is at location 2 with the same length.

The mean pressurecontours are shownin the lowerhalfof Fig. 4a,
whereas the acoustic pressure contours with the liner are shown in
the upper half for two different wave cycles. It is evident from the
acoustic pressure contours that the wave field is perfectly harmonic,
indicating no reflections. The effect of the liner on the acoustic field
is demonstrated in Fig. 4b. It is clear that the liner causes partial
absorption and redistribution of acoustic energy. The resulting far-
field SPL from the Kirchhoff integrations is shown in Fig. 5. The
liner caused abouta 3-dB reductionin SPL in the upstream direction
while it reached the peak value in a direction about 35 deg from the
inlet axis. Note, however, that the liner causes an increase in the
noise level between approximately 45 and 90 deg from the inlet
axis. The reason for this is the generation of additional modes by
the liner, causing new reinforcement and cancellation patterns of
the waves.

Fig. 4a Acoustic pressure
contours showing periodicity
of solution with liner present
(upper half) (contours of p,
at —,t=30Tand--- - -,
t =38 T), and mean pressure
contours (lower half).

Mean pressure

Fig. 4b Effect of liner on acoustic field; source (0, 0) + (0, 1) modes
with 180-deg phase difference at M, =0.204, MFR =15 kg/s, and
BPF =2 kHz.

Hardwall
Liner

e AR

N R T A At A R T TR
80 60 40 20 0O 20 40 60 80
Sound Pressure Level, dB

Fig. 5 Effect of liner on far-field sound levels and directivity; source
(0, 0)+ (0, 1) modes with 180-deg phase difference at M, =0.204,
MFR =15 kg/s, and BPF = 2 kHz.
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C. Radiation of Spinning (6, 0) Mode with Flow

‘We now considerthe (6, 0) spinningmode, resulting from a choice
of 21 rotor blades and 15 stator vanes. The same flow conditions as
the preceding section apply to this case. The rotor speed is assumed
to be 6000 rpm. This gives rise to the (6, 0) spinning mode at a
BPF of 2.1 kHz, with a cutoff ratio of 1.3. The wave amplitude is
set to about 16 Pa at the rotor tip. The time step size At is fixed
to 1/768 BPF. Computations use the same grid as the preceding
cases, except 16 additional grid points per lobe are introducedin the
azimuthal direction.

Figure 6 shows the computed acoustic wave patterns at the fan
face and on the inlet cowl both for the hard-wall and soft-wall cases.
It is clear from the comparison of the images that the liner causes a
reductionin the radiated noise. This is better demonstratedin Fig. 7,
where instantaneous acoustic pressure variations are shown along
the inside surface for a hard-walled cylindrical duct using the ex-
act solution (solid curve), for the hard-walled JT15D inlet (dashed
curve), and for the lined JT15D inlet (dashed-dotted curve). A com-
parisonof theexactcircularductsolutionand the hard-walledJT15D
solutionindicates that the code captured the spinning pressure wave
pattern well. The small phase and amplitude differencesbetween the
two are caused by the nonuniformcross sections of the JT15D inlet.
Itis also evident from Fig. 7 that the liner causes significant attenu-
ation of the pressure wave as it propagates from right to left. This is
quantified in Fig. 8 with the far-field SPL calculatedagain on a 50-m
arc from the inlet mouth using the Kirchhoffsurface shownin Fig. 1.
The most radiation occurs in a direction about 50 deg from the inlet
axis. The impedance condition given by Eq. (3) was used with and
without the convected terms for comparison purposes. In both cases
the liner did not render a significant shiftin the main lobe direction,
but it reduced the noise level by approximately 10 dB with the con-
vected term present and about 8 dB without it. The main reason for
such a relatively higher attenuation compared to those for the plane
wave modes is that a spinning mode traverses longer distances over
the liner element. The distance a spinning mode traverses before it
radiates to the far field depends on the cutoff ratio of the mode.

Without liner With liner

Fig.6 Acoustic pressure contours at fan face and oninlet wall; acoustic
source (6,0) mode at M., =0.204, MFR =15 kg/s, and BPF = 2.1 kHz.

—— Cylindrical duct solution, hard wall
— — - JT15D, hard wall
=== JT15D, lined

n
(=]

Fan face
S

pressure, p’, (N/m®)
=

(=]
T T T T TR

Acoustic
i
o

Lol |J| b b b by by ey
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
Axial position along duct wall, x, (m)

Fig. 7 Instantaneous acoustic pressure at axial positions along in-
side surface of inlet wall; acoustic source (6,0) mode at M, =0.204,
MFR =15 kg/s, and BPF =2.1 kHz.

— Hard wall* .
~ - =" Liner, w/ convected -
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Fig.8 Effect of liner on far-field sound; acoustic source (6, 0) mode at
Mo =0.204, MFR =15 kg/s, and BPF = 2.1 kHz.

Fig. 9 Effect of liner on sound radiation; source (13,0) mode at
Mo =0,MFR =11.9 kg/s, BPF =3.15 kHz, and Z/pycy = 1.136 + 0.5i.

D. Radiation of Spinning (13, 0) Mode with Flow

Radiation of the (13, 0) mode is considered with and without
a liner at the static test conditions of Heidelberg et al.,'> and the
results are compared with their experimental data. Although they
employed a constantradius duct with a thick inlet lip, the inner wall
contourof the actual JT15D inlet'* is usedin the presentstudy. How-
ever, the outer wall contour is slightly modified. The centerbody is
also included in the simulations. The liner is placed 0.126 m up-
stream from the fan face and has a length of 0.08 m. Two different
normalized impedance values, 0.638 + 0.5i and 1.136 4 0.5, are
tested at a freestream Mach number of zero and MFR of 11.9 kg/s.
At these conditions, flow develops through the inlet with the mean
Mach number reaching 0.147 at the fan, which matches the exper-
imental conditions.® The BPF is set to 3150 Hz, and the mode
cutoffratio at this frequencyis 1.05. Computations employ a grid of
241 x 57 x 18 points per circumferential lobe. This grid provides
a resolution of about 16 points per wavelength in the flow region
enclosed by the Kirchhoff surface, which is located at a position
similar to the preceding cases. This grid resolution is sufficient not
to allow significant numerical error accumulation while the acoustic
waves are propagatingthroughthisregion. Computationsare carried
out on eight processors simultaneously.

The mean flowfield was obtained first, which drove the residual
about 12.4 orders of magnitude down. Then the acoustic source was
turned on with an SPL of 120 dB at the inlet wall. Resulting acoustic
pressurecontoursare shownin Fig. 9. The upperhalf of Fig. 9 shows
the radiation pattern for the hard-walled duct and the lower half for
the lined inlet with an impedance value of 0.638 + 0.5i. The effect
of the liner on the radiation of the (13, 0) mode is demonstrated
with the far-field directivity plots in Fig. 10, where the symbols are
the experimental data of Heidelberget al.'> Although the hard-wall
case yielded a very good comparison, the attenuationrates with the
liner were underpredicted. Numerical experimentation showed that
the additional modes created by the liner propagate downstream,
and for this particular mode, the present fan-face condition does
not allow these relatively strong waves pass the boundary properly,
which results in some reflections at the given operating conditions.
These reflections in turn add on the predicted far-field sound. Note
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Fig. 10 Far-field sound pressure level; source (13, 0) mode at M, =0,
MFR =11.9 kg/s, BPF = 3.15 kHz. Curves are present simulations: —,
no liner; - - --, Z/poco = 0.638 + 0.5i; and ---, Z/pycy = 1.136 + 0.5i. Sym-
bols are experiment!3: O, no liner; O, Z/pocy =0.638+0.5i; and V,
Zlpycy =1.136 +0.5i.
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Fig. 11 Parallel code performance.

that such reflections were not observed for the spinning (6, 0) mode
discussed in the preceding section. Nevertheless, a general, more
robustfan-faceboundarytreatmentis needed to minimize reflections
of strong downstream propagating waves.

V. Code Performance

A typical three-dimensionalcomputation for the (13, 0) mode re-
quired about 16 h of CPU time on eight 700-MHz Pentium III pro-
cessors connected with fast ethernet cards. Overall parallel perfor-
mance of the present code is shown in Fig. 11 for three-dimensional
computationswith liner.Itis clear from Fig. 11 thatas the number of
processorsis increased the parallel performance somewhat diverges
from the ideal performanceas a result of the increased communica-
tion overhead compared to the floating point operations.

VI. Conclusions
A paralleland both spatially and temporally fourth-order-accurate
numerical method has been presented for predicting forward radi-
ated noise of ducted fans including the effects of inlet wall acoustic

treatment. The method utilized the z transform to imitate the time-
domain equivalent of the standard frequency-domain impedance
condition. To the author’s knowledge, time-domain simulationsof a
turbofan engine inlet with soft walls have been realized for the first
time using this approach. The ability of the algorithm to capture
sound attenuation effects of liners was demonstrated by compar-
ing hard- and soft-wall solutions of the JT15D inlet. However, the
results presented for the (13, 0) mode showed that the fan-face con-
ditions are vital for accurate far-field predictions, especially when
there exist strong downstream traveling waves created by the liner.
The present method needs incorporationof a more robust boundary
treatment at the fan face.
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