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Parallel Computation of Forward Radiated Noise
of Ducted Fans with Acoustic Treatment
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Middle East Technical University, 06531 Ankara, Turkey

Forward radiated noise of ducted fans is computed numerically on parallel processors solving the three-
dimensional, time-dependent Euler equations in body-conformedcoordinates with a fourth-order-accurate, � nite-
difference, Runge–Kutta time-integration scheme. Sound attenuation effects of inlet wall acoustic treatment are
included in computations employing a time-discrete form of the standard impedance condition. A distributed
computing approach with domain decomposition is used for integrating the equations in parallel using the mes-
sage passing interface library routines. The abilities of the method are demonstrated with hard- and soft-wall
simulations of the JT15D inlet, including � ow effects.

I. Introduction

I NCREASED sizes of turbofanengineshaveplacedmore empha-
sis on fan noise. Reducing this noise relies heavily on acoustic

treatment (liners) of the ducting system of the engine. Careful se-
lection of the lining material and its installation require detailed
analysis of the sound � elds of the engine inlet and exhaust ducts.
To date such analysiswith liners has been done successfullyonly in
the frequency domain,1 whereas time-domain studies treated only
hard-walledducts.2¡4 This is because the behaviorof lining materi-
als is frequency dependent, and an appropriate boundary condition
was not given in the time domain.

A numerical procedure for the application of the classical
frequency-dependent impedancecondition5 in the time domainwas,
however, devised by Özyörük and Long6 using the z transform, es-
tablishing a connection between the frequency and time domains.
This technique was utilized for numerical simulations of a � ow-
impedance tube and was validated by these authors by comparing
results with experiment.7;8 This method is extended in the present
paper to curved walls for numerical predictions of noise radia-
tion from lined ducted fans. Solutions are obtained using the full,
three-dimensional, time-dependent Euler equations as the govern-
ing equations.Nonre� ecting conditions are imposed at the far-� eld
boundariesof the � nitecomputationaldomain.Eigensolutionsto the
standard cylindrical duct problem are used as an acoustic source at
the interface between the fan and inlet region. Acoustic information
is extractedby subtractingthemean � ow� eld from the instantaneous
one. These are described in the next section. Then, applications of
the method to the JT15D turbofaninlet aredemonstratedusingplane
wave and spinning modes. Results are compared with experiment
for the spinning (13, 0) mode.

II. Mathematical Model
A. Governing Equations

The three-dimensional,time-dependentEuler equations in cylin-
drical coordinates are used as the governing equations. These
equations are transformed into a body-� tted curvilinear coordi-
natesystemthroughthemappingsx D x.»; ´; ³ /, r D r.»; ´; ³ /, and
µ D µ.»; ´; ³/, where x; r , and µ are the cylindrical coordinate di-
rections and »; ´, and ³ are the curvilinear coordinate directions.
Thus, the transformed equations can be written in the form
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where QQ D J ¡1Q, QE D J ¡1.»x E C »r F C r ¡1»µ G/, QF D J ¡1.´x E C
´r F C r¡1´µ G/, QG D J ¡1.³x E C ³r F C r ¡1³µ G/, and QS D J ¡1r¡1S,
in which J is the Jacobian of the coordinate transformation. Q is
the conservative solution vector in cylindrical coordinates, that is,
Q D [½; ½u; ½v; ½w; ½e]T , where ½ is the density; u; v, and w are
the velocity components in the x , r , and µ directions, respectively;
and e is the total energy per unit volume. E, F, and G are the vector
components of the � ux tensor, and S is the source vector that arises
in cylindrical coordinates. The terms E, F, G, and S may be found
in standard textbooks and are not repeated here.

B. Boundary Conditions
1. Far-Field Conditions

Calculationsare carried out on a � nite computationaldomain em-
ploying nonre� ecting boundary conditions on the far-� eld bound-
ary. The conditions proposed by Tam and Webb9 and Bayliss and
Turkel10 are used as the nonre� ecting conditions. These boundary
conditions are put in cylindrical coordinates so that the same map-
ping transformationsas in the interior apply to them.

2. Fan-Face Conditions
The steady part of the solution (mean � ow) is obtained using

one-dimensional characteristics-based boundary conditions at the
fan face. These conditions drive the local variables to some mean
values at the fan stage, which are determined a priori based on
one-dimensional gasdynamics relations using the mass � ow rate
(MFR) and freestream Mach number information as the operating
conditions.

Exact cylindrical duct eigensolutions are used at the fan face to
excite the acoustic� eld, which is assumed to be a deviationfrom the
mean � eld. For the cases of no mass � ow through the duct, velocity
perturbations are speci� ed at the fan face. These perturbations are
obtainedsubstitutingthe exact acousticpressureexpressioninto the
momentum equations. The other dependent variables are obtained
from the Euler equations as the interior domain. However, when
there is � ow through the duct, the acousticpressureat the fan face is
speci� ed, and the Euler equationsare solved for the other variables.
Although speci� cation of pressure at the fan face is overrestric-
tive for downstream propagating waves, which may be created by
a liner and/or impedance mismatches due to nonuniform duct cross
sections, this approach worked suf� ciently well for most of the
cases discussed in this paper. It was determined that, when the liner
induced modes are strong, re� ections from the fan-face boundary
may occur and in turn contaminate far-� eld sound, which indicates
that the present fan-face conditions must be improved. Implement-
ing more robust, characteristics-based conditions is the subject of
current research. The rotor–stator interaction theory of Tyler and
Sofrin11 is employed to determine which modes are created with
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the local mean-� ow conditions. Multiple modes and multiple har-
monics of the blade passing frequency (BPF) can be superimposed
to form the source.

3. Hard-Wall Conditions
A properconditionfor Euler calculationson a hard wall is that the

normal velocity vanish. In other words, � uid particles are allowed
to slip at a hard wall. Numerically, the normal component of the
contravariantvelocity,which is givenby VC D ´x u C ´r v C .´µ =r/w
in this paperwith an orthogonalmesh, is set to zero, but the valuesof
the tangential contravariant velocity components, which are given
by UC D »x u C »r v C .»µ =r /w and WC D ³x u C ³r v C .³µ =r /w, are
extrapolatedfrom the interior solution. Density is also extrapolated
from the interior. Then, when it is assumed that the grid lines are
orthogonalat thewall, pressureis foundfromthe normalmomentum
equation
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where Vt is the tangential velocity and R is the radius of wall cur-
vature, which may be found using the metrics.

4. Time-Discrete Impedance Condition
An acoustic impedance condition is applied on acoustically

treated surfaces (liner). Because of the slip condition at the wall
and because there is in general � uid penetration into an acous-
tic treatment element, that is, nonzero normal velocity exists, the
same equations as in the interior are solved for the velocity com-
ponents, but the energy equation is replaced with the impedance
condition equation. The time-discrete form of the impedance con-
dition is given as7
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where pa is the pressureperturbation,superscriptn is the time step,
1t is the time increment from one step to the next,va;n is the normal
component of the velocity perturbation,and L0 is the spatial opera-
tor, L0 D V0 ¢ r ¡ n ¢ .n ¢ rV0/, with V0 the mean velocityand n the
surface normal. When there is transformation from the frequency
domain to the time domain, the effects of the past acoustic � eld on
the current solution are contained in the Rn

a term given by
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where the constant parameters a0;1;:::;MD and b1;:::;MN are related to
the z transform of the functional form of the frequency-dependent
impedance data.7

Implementation of the impedance condition was described pre-
viously for two-dimensionalproblems with � at walls. However, the
inlet wall of a turbofanis not � at, and the wall curvatureeffectsmust
be taken into account properly.This is done in this paper by writing
the spatial operator L0 in the form L0 D U0;C @=@» C W0;C @=@³ C
r´ ¢ @V0=@´, where U0;C and W0;C are the mean tangential con-
travariant velocity components, respectively. Note that the mean
� ow satis� es the � ow tangency, and hence, the normal contravari-
ant velocity V0;C is zero. The impedancecondition and the momen-
tum equations are coupled on curved walls as described in the next
section.

C. Numerical Implementation
A four-stage Runge–Kutta time-integrationscheme is employed

to advance the solution in time. Spatial derivatives are evaluated
using fourth-order accurate � nite differencing. Because central
schemes lack dissipation mechanisms, arti� cial dissipation is used
to suppress the developmentof spurious waves. The amount of dis-
sipation added is based on the local � ow gradients. The stages of
the Runge–Kutta (R–K) scheme are given by
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where R.Q/ and D.Q/ indicate the residual of the governingequa-
tions [sum of the spatial derivatives and the source term in Eq. (1)]
and dissipation, respectively.

The interior solution scheme and the time-discrete impedance
condition are coupled through the linearized normal momentum
equation written at the wall, with V D V0 C Va being velocity de-
composition, as
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where v0;n is the normal component of the mean velocity, L D
U0;C @=@» C V0;C @=@´ C W0;C @=@³ , La is the perturbed equivalent
of L, ½0 is the mean density, and ½a is the density perturbation. In
curvilinear coordinates, it can be shown that Eq. (6) transforms to
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where Va;C is the normal component of the contravariant velocity
perturbation; u0;» and w0;³ are the mean tangential velocity com-
ponents in the » and ³ directions, respectively; R» and R³ are the
radii of wall curvature in the » and ³ directions, respectively; and
jr´j D [´2

x C ´2
r C .´µ =r/2]1=2 . For most cases the mean � ow is ax-

isymmetric; thus, both W0;C and w0;» are zero in Eq. (7). When it
is assumed that this is the case, the time discretization of the lin-
earized normal momentum equation is given on the impedancewall
as follows:
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We evaluate some of the terms at the R–K stage s for enhancing
stability.7 The tangential velocity perturbation ua;» and the density
perturbation½a are extrapolatedfrom the interiorsolutiononce they
are available from integration of the interior equations. Then this
equation is substituted for the time derivative of the normal veloc-
ity perturbation into the impedance condition rewritten for an R–K
stage s in the form
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After rearrangementand discretizationof the resultingequation,the
following form of linear system of equationscan be obtained for the
pressureperturbationsat wall mesh points indexedby subscriptpair
i , k:

gi;k p.s/

i ¡ 2;k C h i;k p.s/

i ¡ 1;k C di;k p.s/

i;k C ei;k p.s/

i C 1;k

C fi;k p.s/

i C 2;k D RHSi;k (10)

where the right-hand side is RHS and the acoustic pressure is given
by p to avoid a crowd of subscripts. This system of equations is
solved after the interior solution is obtained. The normal velocity
perturbation is then found by substituting the acoustic pressure so-
lution into the impedance condition Eq. (9).

In the presentwork, the solutionis storedat the cell centers,rather
than the nodal points on the mesh. This approach overcomes the
singularity problem that exists along the centerline in the current
formulation. As a result of this, the wall conditions are applied
between a ghost point inside the wall and the � rst interior grid point
off the wall. This in turn requires interpolationof the data on thewall
points.Third-orderinterpolationis used to this effect.Extrapolations
of tangential contravariant velocities and density are also done to
third-order accuracy.
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III. Grid System and Parallelization
Conformal mapping is used to generate the meshes used. Such

a mesh is shown in Fig. 1 with its domains for the parallel com-
puting approach of the present method. Each domain is assigned
to a different processor that is on a network for distributed com-
puting. Boundary data are exchanged across the interface between
two neighboring subdomains, that is, communication among the
processors, and message passing interface protocol is used for par-
allelization. In general, a three-dimensionaldomain decomposition
is used such that the ratio of the surface work to the volume work
is minimum.

IV. Discussion of Simulations
Axisymmetric and three-dimensionalcomputationspertainingto

the JT15D inlet geometry are presented. Particularly, forward radi-
ation of the .0; 0/ C .0; 1/, and spinning (6, 0) and (13, 0) modes is
considered at different operating conditions. Axisymmetric com-
putations are carried out for the .0; 0/ C .0; 1/ modes, whereas
full three-dimensional computations are performed for the spin-
ning modes. A single spinning mode represents periodic waves in
the azimuthal direction. Therefore, for such cases it is suf� cient to
consider only one pressure lobe with periodic boundary conditions
to reduce the computation time. The inlet centerbody is omitted in
computations of the .0; 0/ C .0; 1/ and (6, 0) modes but retained in
computation of the (13, 0) mode.

Calculations employ only fourth-order arti� cial dissipation to
provide the necessary background dissipation with minimal effects
on the physical waves. Local time stepping is used for steady-state
solutions (mean � ow), but for acoustic calculations, the time-step
size 1t is determined based on the BPF such that 1t is within the
stabilityboundsof the scheme.Far-� eld sound is determinedusinga
moving surfaceKirchhoff’s formula (see Ref. 12). The detailsof the

Fig. 1 Computationalmesh and its decomposition for distributed par-
allel computing (every other grid line shown).

a) b)

Fig. 2 Alteration of acoustic � eld by liner: a) upper half without liner and lower half with liner at position 1 and b) upper and lower halves with liner
at positions 2 and 3, respectively.

Kirchhoff algorithmare given by Özyörük and Long.2 The acoustic
treatment panel used in computations of the plane wave modes and
the spinning (6, 0) mode is that in Ref. 7. The impedance values of
this liner and that used for the spinning (13, 0) mode are given in
Table 1 for the frequencies considered in the paper.

A. Radiation of (0, 0) + (0, 1) Modes Without Mass Flow
The � rst case involves tonal radiation of the plane wave modes

(0, 0) and (0, 1) combined up to the fourth harmonic of the BPF
forming a multifrequency source. A 180-deg phase difference is
introduced between the (0, 0) and (0, 1) modes of each harmonic,
and the total acoustic pressure amplitude for each pair is selected to
carry a sound pressure level of 120 dB at the rotor blade tips. The
BPF is chosen as 0.5 kHz so that the highest harmonic (for which
the frequency is 2 kHz) does not exceed the resolution requirement
of the mesh. At these conditions,only the (0, 1) mode at the BPF is
naturallycut off.The grid has 192£ 48 pointsalong the inlet surface
and in the normal direction to it, respectively. Figure 1 shows the
mesh with everyothergrid linedeletedfor clarity.The grid is divided
into four subdomains for parallel processing.The Kirchhoff surface
location is also illustrated in Fig. 1. In the important region, from
the fan face to the Kirchhoff surface, the number of grid points
per wavelength does not fall below 16 for the 4 BPF waves. This
grid resolution is suf� cient for propagating the waves numerically
without signi� cant numerical error buildup.2 The time-step size is
taken as 1=1024BPF. Three different liner locations are chosen for
comparison purposes, with a constant material length of 0.21 m.

The liner locations are shown in Figs. 2a and 2b along with the
computed acoustic pressurecontours from excitation at the fan face
using these modes. No mass � ow exists. The effect of the acoustic
treatment is clear from Figs. 2a and 2b. It is evident that there is
strong focusingof the waves toward the centerline.When compared
with the hard-wall case, the generation of some additional modes
over the liner is observed, especially for liner position 1. These
modes propagate both in upstream and downstream directions.The
fan-face conditions yielded only minor re� ections, which did not
extend back out to the Kirchhoff surface location shown in Fig. 1.
This was observed for each liner location considered, when the
acousticpressurecontoursat differentwave periodswere compared.

Table 1 Liner impedance

Frequency,
kHz Z=½0c0

0.5 0:406¡ 1:587i
1.0 0:476C 0:113i
1.5 1:078C 1:638i
2.0 5:009¡ 0:276i
2.1 4:008¡ 1:601i
3.15 0:638C 0:500i
3.15 1:136C 0:500i
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Fig.3 Effect of linerplacementonfar-� eld sound levels and directivity;
source (0, 0) and (0, 1) modes with 180-deg phase difference combined
at 1 BPF (0.5 kHz), 2 BPF, 3 BPF, and 4 BPF without mass � ow.

The Kirchhoff surface integration results for the far-� eld sound
are given in Fig. 3 for each harmonic of the fundamental frequency,
which were separatedby a fast Fourier transform.Kirchhoff integra-
tionswere performedat everyfourthtime stepof theR–K integration
for a 50-m radius arc from the inlet mouth. Because the (0, 1) mode
is cut off at 1 BPF, sound pressure level (SPL) curves do not exhibit
any wave reinforcements or cancellations at far-� eld points at this
low frequency. It is evident from Fig. 3 that liner position 3 is the
best location for absorbingnoise at this particularfrequency, though
the total attenuationis not signi� cant compared to that for the 2 BPF
components.Although all liner locations yielded some reduction in
SPL in a region up to 40 deg from the inlet axis, there is an increase
in SPL between40and 150 degat 2 BPF. As the frequencyincreases,
more lobes appear. Liner position 2 yielded signi� cant attenuation
for the 3 BPF components between 60 and 150 deg, although the
other locations did not. Liner position 1 appears to be the best in
overall attenuationpattern at 3 BPF. The 4 BPF componentsare also
absorbed signi� cantly with this position of the liner.

B. Radiation of (0, 0) + (0, 1) Modes with Flow
In this section, the ability of the code is demonstrated with mass

� ow. Again the (0, 0) and (0, 1) modes are selected for excitation,
but at a BPF of 2.0 kHz. Introducing additional frequencies caused
stability problems due to the sudden jump in the impedance at the
junctions of the liner and hard walls, similar to those discussed in
detail in Refs. 7 and 8. It was shown in Ref. 8 that this type of
instability could be removed using a sheared background� ow. The
freestream Mach number and the MFR are arbitrarily taken to be
0.204 and 15 kg/s, respectively.A mean-� ow calculation is carried
out � rst, until the residual is driven about 12 orders of magnitude

down. Then acoustic computationsare started from the steady-state
solution,with 1t D 1=512 BPF. At BPF D 2:0 kHz, the cutoff ratios
for the (0, 0) and (0, 1) modes are 1 and 2.6, respectively.The total
amplitude of these modes is set to a � uctuation level of 110 dB at
the rotor tip. The same mesh as the preceding case is used, and the
liner is at location 2 with the same length.

The mean pressurecontoursare shownin the lowerhalfof Fig. 4a,
whereas the acoustic pressure contours with the liner are shown in
the upper half for two different wave cycles. It is evident from the
acousticpressurecontours that the wave � eld is perfectlyharmonic,
indicatingno re� ections.The effect of the liner on the acoustic � eld
is demonstrated in Fig. 4b. It is clear that the liner causes partial
absorption and redistribution of acoustic energy. The resulting far-
� eld SPL from the Kirchhoff integrations is shown in Fig. 5. The
liner caused about a 3-dB reductionin SPL in the upstreamdirection
while it reached the peak value in a direction about 35 deg from the
inlet axis. Note, however, that the liner causes an increase in the
noise level between approximately 45 and 90 deg from the inlet
axis. The reason for this is the generation of additional modes by
the liner, causing new reinforcement and cancellation patterns of
the waves.

Fig. 4a Acoustic pressure
contours showing periodicity
of solution with liner present
(upper half) (contours of pa
at ——, t = 30 T and ¢ ¢ ¢ ¢ ¢ ;
t = 38 T), and mean pressure
contours (lower half).

Fig. 4b Effect of liner on acoustic � eld; source (0, 0) + (0, 1) modes
with 180-deg phase difference at M1 = 0:204, MFR = 15 kg/s, and
BPF = 2 kHz.

Fig. 5 Effect of liner on far-� eld sound levels and directivity; source
(0, 0) + (0, 1) modes with 180-deg phase difference at M 1 = 0:204,
MFR = 15 kg/s, and BPF = 2 kHz.
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C. Radiation of Spinning (6, 0) Mode with Flow
We now considerthe (6, 0) spinningmode, resultingfroma choice

of 21 rotor blades and 15 stator vanes. The same � ow conditions as
the precedingsection apply to this case. The rotor speed is assumed
to be 6000 rpm. This gives rise to the (6, 0) spinning mode at a
BPF of 2.1 kHz, with a cutoff ratio of 1.3. The wave amplitude is
set to about 16 Pa at the rotor tip. The time step size 1t is � xed
to 1=768 BPF. Computations use the same grid as the preceding
cases, except 16 additionalgrid points per lobe are introducedin the
azimuthal direction.

Figure 6 shows the computed acoustic wave patterns at the fan
face and on the inlet cowl both for the hard-wall and soft-wall cases.
It is clear from the comparison of the images that the liner causes a
reductionin the radiatednoise.This is better demonstratedin Fig. 7,
where instantaneous acoustic pressure variations are shown along
the inside surface for a hard-walled cylindrical duct using the ex-
act solution (solid curve), for the hard-walled JT15D inlet (dashed
curve), and for the lined JT15D inlet (dashed–dotted curve). A com-
parisonof theexactcircularduct solutionand thehard-walledJT15D
solution indicates that the code captured the spinningpressurewave
patternwell. The small phaseand amplitudedifferencesbetween the
two are caused by the nonuniformcross sectionsof the JT15D inlet.
It is also evident from Fig. 7 that the liner causes signi� cant attenu-
ation of the pressure wave as it propagates from right to left. This is
quanti� ed in Fig. 8 with the far-� eld SPL calculatedagain on a 50-m
arc from the inlet mouth using the Kirchhoffsurfaceshown in Fig. 1.
The most radiationoccurs in a direction about 50 deg from the inlet
axis. The impedance condition given by Eq. (3) was used with and
without the convectedterms for comparisonpurposes. In both cases
the liner did not render a signi� cant shift in the main lobe direction,
but it reduced the noise level by approximately10 dB with the con-
vected term present and about 8 dB without it. The main reason for
such a relatively higher attenuationcompared to those for the plane
wave modes is that a spinning mode traverses longer distances over
the liner element. The distance a spinning mode traverses before it
radiates to the far � eld depends on the cutoff ratio of the mode.

Without liner With liner

Fig. 6 Acoustic pressure contours at fan face and on inlet wall; acoustic
source (6, 0) mode at M 1 = 0:204, MFR = 15 kg/s, and BPF = 2.1 kHz.

Fig. 7 Instantaneous acoustic pressure at axial positions along in-
side surface of inlet wall; acoustic source (6, 0) mode at M 1 = 0:204,
MFR = 15 kg/s, and BPF = 2.1 kHz.

Fig. 8 Effect of liner on far-� eld sound; acoustic source (6, 0) mode at
M 1 = 0:204, MFR = 15 kg/s, and BPF = 2.1 kHz.

Fig. 9 Effect of liner on sound radiation; source (13, 0) mode at
M 1 = 0, MFR = 11.9 kg/s, BPF = 3.15 kHz, and Z/½0c0 = 1.136 + 0.5i.

D. Radiation of Spinning (13, 0) Mode with Flow
Radiation of the (13, 0) mode is considered with and without

a liner at the static test conditions of Heidelberg et al.,13 and the
results are compared with their experimental data. Although they
employed a constant radius duct with a thick inlet lip, the inner wall
contourof theactual JT15D inlet14 is used in thepresentstudy.How-
ever, the outer wall contour is slightly modi� ed. The centerbody is
also included in the simulations. The liner is placed 0.126 m up-
stream from the fan face and has a length of 0.08 m. Two different
normalized impedance values, 0:638 C 0:5i and 1:136 C 0:5i , are
tested at a freestream Mach number of zero and MFR of 11.9 kg/s.
At these conditions, � ow develops through the inlet with the mean
Mach number reaching 0.147 at the fan, which matches the exper-
imental conditions.13 The BPF is set to 3150 Hz, and the mode
cutoff ratio at this frequencyis 1.05. Computationsemploy a grid of
241£ 57 £ 18 points per circumferential lobe. This grid provides
a resolution of about 16 points per wavelength in the � ow region
enclosed by the Kirchhoff surface, which is located at a position
similar to the preceding cases. This grid resolution is suf� cient not
to allow signi� cant numericalerror accumulationwhile the acoustic
waves arepropagatingthroughthis region.Computationsare carried
out on eight processors simultaneously.

The mean � ow� eld was obtained � rst, which drove the residual
about 12.4 orders of magnitudedown. Then the acoustic source was
turnedon with an SPL of 120 dB at the inlet wall. Resultingacoustic
pressurecontoursare shown in Fig. 9. The upperhalf of Fig. 9 shows
the radiation pattern for the hard-walled duct and the lower half for
the lined inlet with an impedance value of 0:638 C 0:5i . The effect
of the liner on the radiation of the (13, 0) mode is demonstrated
with the far-� eld directivity plots in Fig. 10, where the symbols are
the experimental data of Heidelberg et al.13 Although the hard-wall
case yielded a very good comparison, the attenuation rates with the
liner were underpredicted.Numerical experimentationshowed that
the additional modes created by the liner propagate downstream,
and for this particular mode, the present fan-face condition does
not allow these relatively strong waves pass the boundary properly,
which results in some re� ections at the given operating conditions.
These re� ections in turn add on the predicted far-� eld sound. Note
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Fig. 10 Far-� eld sound pressure level; source (13, 0) mode at M1 = 0,
MFR = 11.9 kg/s, BPF = 3.15 kHz. Curves are present simulations:——,
no liner; - - - -, Z/½0c0 = 0.638 + 0:5i; and –¢ – , Z/½0c0 = 1:136 + 0:5i. Sym-
bols are experiment13: , no liner; , Z/½0c0 = 0:638 + 0:5i; and r ,
Z/½0c0 = 1:136 + 0:5i.

Fig. 11 Parallel code performance.

that such re� ections were not observed for the spinning (6, 0) mode
discussed in the preceding section. Nevertheless, a general, more
robustfan-faceboundarytreatmentis neededto minimizere� ections
of strong downstream propagating waves.

V. Code Performance
A typical three-dimensionalcomputationfor the (13, 0) mode re-

quired about 16 h of CPU time on eight 700-MHz Pentium III pro-
cessors connected with fast ethernet cards. Overall parallel perfor-
mance of the present code is shown in Fig. 11 for three-dimensional
computationswith liner. It is clear from Fig. 11 that as the numberof
processors is increased the parallel performancesomewhat diverges
from the ideal performanceas a result of the increased communica-
tion overhead compared to the � oating point operations.

VI. Conclusions
A parallelandbothspatiallyand temporallyfourth-order-accurate

numerical method has been presented for predicting forward radi-
ated noise of ducted fans including the effects of inlet wall acoustic

treatment. The method utilized the z transform to imitate the time-
domain equivalent of the standard frequency-domain impedance
condition.To the author’s knowledge, time-domain simulationsof a
turbofan engine inlet with soft walls have been realized for the � rst
time using this approach. The ability of the algorithm to capture
sound attenuation effects of liners was demonstrated by compar-
ing hard- and soft-wall solutions of the JT15D inlet. However, the
results presented for the (13, 0) mode showed that the fan-face con-
ditions are vital for accurate far-� eld predictions, especially when
there exist strong downstream traveling waves created by the liner.
The present method needs incorporationof a more robust boundary
treatment at the fan face.
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